
Mario Gleichmann XPUG Rhein/Main

Behaviour Driven Development

A new Look at Test Driven Development

Mario Gleichmann XPUG Rhein/Main

BDD – Motivation and core ideas

TDD

Mario Gleichmann XPUG Rhein/Main

BDD – Motivation and core ideas

BULLSHIT !!!

Mario Gleichmann XPUG Rhein/Main

BDD – Motivation and core ideas

Testing

Mario Gleichmann XPUG Rhein/Main

A typical TDD Learning Process

1. Start writing unit tests around code

2. Enjoy a strongly increased sense of confidence

3. Insight that writing the tests before writing the
 code, helps to focus on writing only the code that
 is needed.

4. Notice that tests serve to document how the code
 works.

Mario Gleichmann XPUG Rhein/Main

True benefits of TDD

5. Realise that writing tests in this way helps to
 'discover' the API to the code

Mario Gleichmann XPUG Rhein/Main

True benefits of TDD

 6. Realise that TDD is about defining Behaviour
 rather than testing

Mario Gleichmann XPUG Rhein/Main

BDD – Motivation and core ideas

Testing

Mario Gleichmann XPUG Rhein/Main

BDD – Motivation and core ideas

Evolution

Mario Gleichmann XPUG Rhein/Main

BDD – Motivation and core ideas

Language

Mario Gleichmann XPUG Rhein/Main

BDD – Motivation and core ideas

Units

Mario Gleichmann XPUG Rhein/Main

BDD – Motivation and core ideas

Units

Mario Gleichmann XPUG Rhein/Main

BDD – Motivation and core ideas

Behaviour

Mario Gleichmann XPUG Rhein/Main

BDD – Motivation and core ideas

Verification

Mario Gleichmann XPUG Rhein/Main

BDD – Motivation and core ideas

State

Mario Gleichmann XPUG Rhein/Main

BDD – Motivation and core ideas

State

Mario Gleichmann XPUG Rhein/Main

BDD – Motivation and core ideas

Interaction

Mario Gleichmann XPUG Rhein/Main

BDD – Motivation and core ideas

Assertion

Mario Gleichmann XPUG Rhein/Main

BDD – Motivation and core ideas

Assertion

Mario Gleichmann XPUG Rhein/Main

BDD – Motivation and core ideas

Expectation

Mario Gleichmann XPUG Rhein/Main

Verification vs. Specification

 'testing is all about making sure that your code
functions correctly (verifying by stating
assertions) ...

... while specifying is all about defining what it
means for your code to function correctly
(stating Expectations)'

(Robert C. Martin)

Mario Gleichmann XPUG Rhein/Main

BDD – Motivation and core ideas

xUnit

Mario Gleichmann XPUG Rhein/Main

BDD – Motivation and core ideas

Specification
Frameworks

Mario Gleichmann XPUG Rhein/Main

Specification of a Stack
Frank: What's a stack?

Linda: It's a container that collects objects in a first in, last out
manner.

It should provide the possibility to push and pop objects.

Sometimes you'll want to peek the last added element,
as well ...

Frank: What does push do?

Linda: push takes an input object, say foo, and places it onto
the stack.

 push should return the successfully pushed object.

The stack should contain that object afterwards.

Mario Gleichmann XPUG Rhein/Main

Specification of a Stack

Frank: What if I push two things, like foo and then bar ?

Linda: The second object, bar, should be on top of the
conceptual stack (containing at least two objects),

so that if you call pop, bar should come off instead of
the first object, which, in your case, is foo.

If you called pop again, then foo should be returned

and the stack should be empty
(assuming there wasn't anything in it before you added
the two objects).

Mario Gleichmann XPUG Rhein/Main

Specification of a Stack

Frank: So pop removes the most recent item placed
into the stack?

Linda: Yes, pop should remove the top item
(assuming there are items to remove).

peek follows the same rule, but the object isn't
removed.
peek should leave the top item on the stack.

Mario Gleichmann XPUG Rhein/Main

Specification of a Stack

Frank: What if I call pop without having pushed
anything?

Linda: pop should throw an exception indicating that
nothing has been pushed yet.

Frank: What if I push() null?

Linda: The stack should throw an exception because null
isn't a valid value to push().

Mario Gleichmann XPUG Rhein/Main

Describing Expectations using 'should'

Equality should(be (..)

Negation should(not (predicate(..)))

Types should(be (ofType(class)))

Counts should(have (atLeast(3, class))))
should(have (atMost(5, class))))

P.Match. should(match(regexp))

...

Mario Gleichmann XPUG Rhein/Main

Summary

We need to start thinking in terms of

behavior specifications
(instead of verification tests)

Current TDD vocabulary shapes a mindset that takes us in a wrong direction

TDD should focus on design
TDD should focus on behaviour

TDD should focus on documentation

A new name for this new way of working:

Behaviour Driven Development

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29

